
NOTATION 

p, gas density; P, pressure; Po, gas density at pressure Po. 
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APPLICATION OF STATISTICAL APPROACHES TO SOLVE IMPURITY 

PROPAGATION PROBLEMS 

N. I. Selyuk and Yu. M. Dyukarev UDC 532.72:519.210 

The Cauchy problem for an equation of hyperbolic type describing impurity diffu- 
sion at a finite velocity is solved by the Monte Carlo method. 

In connection with the appearance of high-speed electronic computers, interest in the 
Monte Carlo method has increased considerably at the present time. Its simplicity and uni- 
versality permit extension of the circles of problems that can be solved by this method. In 
particular, this refers to problems allowing probabilistic treatment. 

Let us examine a problem associated with impurity propagation in an unbounded space. 

As is known, the description of passive impurity propagation processes in a turbulent 
medium by a semiempirical turbulent diffusion equation has the disadvantage that the velocity 
of impurity propagation is infinite. Hence, it can be detected at any instant at any dis- 
tance from the source. This results in substantial errors when determining the impurity con- 
centration near a cloud boundary. 

Certain authors ([i] and the bibliography therein) proposed extensions of the diffusion 
equations by giving them a hyperbolic character (in this case the impurity propagation veloci- 
ty is finite). In this connection, the stochastic models based on the random walk method 
merit special attention. 

Let us consider the simplest one-dimensional model of continuous motion of impurity par- 
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ticles in a turbulent flow. Let us assume that the instantaneous velocity of particles moving 
randomly at the constant velocity v exists almost everywhere and is bounded~ and the ordinate 
of each particle and the direction of its motion jointly form a Markov process. 

During each time interval dt a probability adt exists for the change in particle motion 
direction because of its collisions with other particles. 

The distribution of the number of collisions N(t) which a particle experienced to the 
time t is a Poisson distribution [2] 

P {N (t) = k} = (at)h exp ( - -  at). 

Taking into account that the particle velocity changes sign with each collison, the 
velocity at the time t equals v(t) = v(--l)N(t) and its position is 

where 

t 

X (t) ~- ~ V ('r dT = vt*, 
0 

t 

t* = ~ (--1)N(*)dT 
0 (1) 

(t* is the so-called "randomized time"). 

Under the assumptions mentioned, the particle concentration S(x, t) satisfies the known 
telegraph equation [i] 

1 0 ~ S  2a OS 02S 
- -  - - - -  - J r -  - -  - -  - -  I 

V z Ot z v ~ Ot Ox 2 ( 2 )  

which ,  in  t he  l i m i t  as  a---~oo, v . -+oo ,  v 2 / 2 a - + D ,  goes  o v e r  i n t o  t h e  o r d i n a r y  p a r a b o l i c  t u r b u l e n t  
d i f f u s i o n  e q u a t i o n .  

Le t  us c o n s i d e r  t h e  Cauchy p rob lem f o r  ( 2 ) .  The i n i t i a l  c o n d i t i o n s  a r e  

OS /I = O. S (x, O) ~ (x), - ~  .t=o 

It can be shown [2] that the solution of the problem (2), (3) is expressed by the 
formula 

(3) 

s(x, t) = ~- [ < ~(x + vt*) > + < ~(x - -vt*)  > 1, (4)  

where t* is defined by (i), and <...> is the mathematical expectation. In the particular 
case a = 0, when the probability of a change in particle motion direction is zero, the solu- 
tion (4) goes over into the known D'Alembert solution of the Cauchy problem for string vi- 
brations [3]. 

It can be shown that t*~t; hence, the particle concentration S(x, t) can only be pro- 
pagated the distance x = vt*~vt in a time t. 

We therefore obtain for the realization with number i 

The arithmetic mean 

1 
s ,  (x, 0 = -2- [,~ (x + vt*) + ~ (x - -  vt*)l. 

z 

K 
1 

i = 1  

can be used as an estimate for the quantity S(x, t). 

The modeling of particle motion for arbitrary ~, t is performed multiply to obtain a 
statistically stable value of the desired function S(x, t). 

(5) 
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Selection of the quantity of realization K depends on what requireraents are imposed on 
S(x, t). The estimate S(x, t) obtained for the function S(x, t) differs from S(x~ t) be- 
cause of random reasons in the general case~ it is consequently expedient to examine the 
question of the accuracy and confidence of the obtained values S(x, t) in greater detail. 

The accuracy of the estimate S(x, t) can be characterized by the quantity s such that 

IS(x, t)--S(x, t ) l < e ,  (6) 

and its confidence, by the probability ~ that inequality (6) would be satisfied [4], i.e., 

P (IS (x, t ) - -  S (x, t)! < e) = ~. 

Let us determine the quantity of realizations K needed to obtain the estimate S(x, t) 
with accuracy e and confidence g. 

Let the random variable S(x, t) have the mathematical expectation S(x, t) and the vari- 
ance 02 . Because of the central limit theory of probability theory, for sufficiently large 
values of K the quantity S(x, t) has an almost normal distribution with mathematical expec- 
tation S(x, t) and variance oa/K. Hence, for each value of B a quantile magnitude t g can be 
selected from the normal distribution table such that e = t~o/FK, from wNich follows 

K : l.~o-,~,. (7 )  

Taking into account that the value of o 2 is ordinarily unknown the quantity mentioned 
is taken equal to the variance OK, determined over K* realizations in modeling practice, 
where K* = i00-200. Then K is determined by means of (7) under the condition o 2 = o~,. 

Therefore, to find the numerical result of solving problem (2), (3) to the required ac- 
curacy e and confidence B, it is necessary to execute K realizations of the Poisson process, 
to evaluate t* by means of (I), and to find the mean value of the solution of the appropriate 
wave equation. 

For a practical realization of the algorithm considered above for the evaluation of the 
integral (i), it is more convenient to use the known property of the Poisson process [5] that 
the time interval between two successive events (in our case two successive collisions, when 
the direction of particle motion changes) is a random variable that can be represented ac- 
cording to [6], in the form 

Inn 

a ( 8 )  

where a is a random variable distributed uniformly in the interval (0, i). The evaluation of 
the integral (i) hence reduces to realization of the sampling of the random variable a, which 
is easily accomplished on an electronic computer according to a standard program to obtain 
"pseudorandom numbers." 

Using (8) for each r-th realization of the random variable ar, we find the time interval 
T r between two successive collisions during which the particle did not change the direction 
of its motion. 

The quantity of realizations R of the sampling process for the random variable a depends 
on the time t and is selected from the condition 

R 
rain ~%~ T~ ~ t. 

R .d~ 

Let us represent this mentioned sum in the form 

where 

R 
T~ = T + q- T - ,  

T + 
R'r R ' 

= ~P' Tot l; T - =  "~ Tot. 
r = l  r = l  

(9) 
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Fig .  l .  I m p u r i t y  c o n c e n t r a t i o n  
p r o f i l e s  S(x, t)  a t  d i f f e r e n t  
times: i) t = 0; 2) i; 3) 2; 4) 
3; 5) 4. 

Taking the initial direction of particle motion as positive, and taking into account 
that for each collison the motion direction will be reversed, we see from (9) that the par- 
ticle would move in the positive direction during the time T +, and in the negative direction 
during T-. The "randomized time" t* = T + = T§ - is determined from known values of T + 
and T-. 

By using the statistical approach examined above, the problem about impurity propagation 
in an unbounded two- (or three)-dimensional space can also be solved. 

Let the impurity propagation be described by the equation 

I 02S 2a OS 
- - - - +  - AS, 
v 2 Otz v 2 Ot (10) 

where A i s  the  two- (or  t h r e e ) - d i m e n s i o n a l  Laplace  o p e r a t o r .  The i n i t i a l  c o n d i t i o n s  a re  

OS l o s ( M ,  o ) =  ~(M),  7 = o, 
= (ii) 

where M is a point of two- (or three)-dimensional space. 

The solution of the problem (i0), (ii) is expressed in terms of known solutions (e.g., 
the integral Poisson (or Kirchhoff) formula [3]) of the appropriate problem for the wave 

equation (equation (i0) with the term 2_aav 20S)oI omitted: , in which the time t should be re- 

placed by the "randomized time" t* according to (i), and the mean value should be found [2]. 

The considered statistical approach to solve the problem of impurity propagation in an 
unbounded space by using the Poisson process and a comparatively simple procedure permits a 
solution to be obtained for the problem in terms of known solutions of simpler problems by 
avoiding the application of complex and tedious analytical or numerical methods here. 

As an illustration of the method described above, profiles of the concentration S(x, t) 
are shown in Fig. 1 at fixed times t, as obtained as a result of solving problem (2), (3) 
for v = i, a = i0, s = 0.01, B = 0.95, K* = 200: 

(x)= lOcosx ~r I x [ ~ / 2 ,  
0 ~r  [ x l > ~ / 2 -  

For given values of e, 8, K*, there were 2800 tests required (here t* was estimated by 
means of the same realizations for any times not exceeding t). 

To estimate the quality of the computation, the concentration profiles obtained were 
compared with concentration profiles computed to the same accuracy (~ = 0.01) by means of the 
exact solution of the problem under consideration which has the form 
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1 exp (-- at) {cp (x --  vt) + ~p (x + vt) + t) = - i  

-+-a ff r a V v2 t2_ (~_x )Z )  -[ ~/v2t2_(~_x)  2 Ida}, 
x--vt 

where Io, I~ are Bessel functions of imaginary argument of the zeroth and first order, re- 
spectively. All the appropriate concentration profiles are here in agreement to 1.5E accu- 
racy, which indicates the efficiency of the computation method examined above. 

NOTATION 

t, time; x, coordinate; P, probability; a, characteristic frequency of turbulent pulsa- 
tions; D, coefficient of turbulent diffusion; R', integer part of the number R/2; and R" = 
R--R'. 

2. 

3. 

4. 
5. 
6. 
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SOLUTION OF HEAT-CONDUCTION PROBLEMS IN HETEROGENEOUS MEDIA 

BY THE INTEG~kL RELATIONS METHOD 

Yu. V. Kalinovskii UDC 536.2 

The integral relations method is developed to solve heat-conduction problems in a 
two-component complex medium and nonstationary filtration for the case of bounded 
and unbounded domains. 

The integral relations method is used sufficiently extensively to solve heat-conduction 
problems because of thesimplicity of the method itself and of the approximate solutions ob- 
tained with its use. A detailed survey and application of this method to solve different 
linear and nonlinear heat-transfer problems in homogeneous bodies can be found in [i]; this 
method is also applied in other branches of the mechanics of continuous media, e.g., in the 
theory of nonstationary filtration [2]. 

The method of integral relations has not been used to solve heat-conduction problems in 
heterogeneous continuous media; however, its application to filtration problems in binary 
media has been attempted (the equations of heat propagation in heterogeneous media [3] are 
analogous to the equations of nonstationary filtration of a homogeneous fluid in porous- 
cracked media [4, 5]). A completely degenerate system of heat-conduction equations in a two- 
component continuous medium (~i = 0, e2 = 0), reduced to one equation, was taken as the basis 
in [6]. In such an approach it is required to take account of the singularity in the formu- 
lation of the initial and boundary conditions [7, 8], which is inconvenient, and also the 
domain of application of the method is shrunken (the condition el ~ 0 is not always satisfied). 
Moreover, the dimension of the perturbed zone turns out to be different from zero at the ini- 
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